

VERIFICATION OF ILI INSPECTION RESULTS WITH THE USE OF AUTO UT DATA

Holly Plummer, Ian Murray, Derek Balmer, Steve Farnie November 19th, 2014

> GE Proprietary Information—Class III (Confidential) Export Controlled—U.S. Government approval is required prior to export from the U.S., re-export from a third country, or release to a foreign national wherever located.

A CASE STUDY OF AN OFFSHORE PIPELINE Introduction

The Pipeline	The Problem	
History, Importance	Integrity Concerns	
Condition, inspections	Verification of in-line inspection data	
The Software and AssessmentThe software toolsThe assessment methodology	The Results The findings of the investigations following the assessment and verification 	

The Pipeline Background and History

Large Diameter, Offshore, Crude Oil Pipeline

- Multiple Inspections
 - MFL, USWM and Calliper
 - Most recent inspection conducted with an MFL inspection vehicle
- Multiple Integrity Studies
 - Fitness For Purpose Studies
 - Corrosion Growth Assessments
 - Remaining Life Investigations

Critical line for operations and supply. The consequences of a leak would be severe

The Pipeline MFL Tool Sizing Spec

	METAL LOSS CATEGORY		
	Pitting <(3tx3t)*	General >(3tx3t)*	Gouging
Minimum Depth for Accurate Sizing	0.2t with surface dimension greater than: (7mm)x(7mm) or	0.1t	If w>0.5t or 7mm**=0.2t If w>3t=0.1t
Sizing Accuracy (Depth)	±0.1t	±0.1t	±0.1t
HAZ	±0.15t	±0.15t	±0.15t
Sizing Accuracy (Length)	±10mm	±20mm	±20mm
HAZ	±15mm	±25mm	±25mm

The most recent inspection was carried out using PII's MFL3 ILI tool

Corrosion Summary:

- Specification for 12" -56"
- Applicable for seam welded/ERW/spiral weld/seamless pipelines
- Specification given for pitting and general corrosion
- Smaller features are reported when visible
- Standard sizing spec therefore is ± 10% wt at the 80% confidence interval

4

The Pipeline Condition

The pipeline has >600,000 corrosion features throughout its length

Corrosion Summary:

- Predominantly internal and at bottom of the line (6 o'clock)
- Previous Corrosion growth studies found Corrosion was active and growing
- Features typical of pitting and areas of general corrosion
- Recent studies had predicted features required repair within 5 years

The Pipeline Data Example

PPSA Aberdeen | 19th Month 2014

The Problem Verification of ILI Results

Aims

- Verify MFL ILI results
- Confirm repair options
- Bring pipeline back into operation after mothballing

In-field Investigation

- AUT scans were performed where the MFL ILI reported significant corrosion (predicted to require repair in the near future).
- Concrete coating was removed from the pipeline and the survey was conducted by scanning the outer surface of the pipeline
- AUT scans were centred on the 6 o'clock position of the pipeline

Challenges

- Difficult to match the AUT with MFL ILI data
- Certainty AUT is scanning the same area of corrosion as reported by the MFL ILI,
 - Tolerances on: length/depth/distance/orientation
- Challenges of carrying out AUT infield (offshore)
- Typical verification is performed on the peak depth of a small number of defects per site

The Software and Assessment DigCom

Comparison of AUT and MFL data was performed in DigCom software

Software:

- Comparison of depths and investigation of the full profile and interactions within complex corrosion features
- Maps ILI data directly onto the in-field scan using weld number and relative distance
- Visual process allows the ILI data to be aligned and scaled
- Point to point match for high degree of confidence

GE proprietary and confidential information © 2014 GE and Al Shaheen – All Rights Reserved

The Software and Assessment Data Matching

The Software and Assessment Data Matching

In-Field AUT Scan Data

- Converted from scan grid data
- Warmer colours signify deeper pits

ILI MFL Data

- Colour scale on ILI to match AUT data
- Warmer colours signify deeper pits

The Results MFL ILI vs Auto UT

Excellent agreement between MFL and AUT

Results Summary:

- >500 defects matched
- Sample taken from 9 spools throughout the line
- Sample included a range of feature depths
- Sample is considered representative
- 80% confidence interval is ± 5.96% wt, therefore the ILI contractual sizing specification was exceeded

PPSA Aberdeen | 19th Month 2014

The Results Auto UT Corrosion Rates

Several sites had been scanned using Auto UT previously

Results Summary:

- Corrosion Growth rates were determined by matching and comparing the depths
- This was carried out using the DigCom software using the MFL ILI data as a reference to enable defect matching
- Sample is considered representative
- In order to complete the integrity assessment on these defects a combination of the measured defect morphology was used (MFL ILI and AUT)

A CASE STUDY OF AN OFFSHORE PIPELINE Conclusions

Automated Ultrasonic scan data was successfully matched and aligned with Magnetic Flux Leakage in-line inspection data

Corrosion growth rates were successfully determined from comparison between Automated Ultrasonic scans

The MFL ILI tool exceeded stated specification at the 80% confidence interval (\pm 5.96% wt compared to \pm 10% wt for general corrosion and pitting within the pipe body)

Defect morphology was successfully combined between technologies to determine improved feature sizing in investigated areas

