### HALLIBURTON

Pipeline & Process Service

### Pipeline Deposit Assessment and Cleaning Techniques

Rachel Riddell rachel.riddell@halliburton.com +44 1224 776680

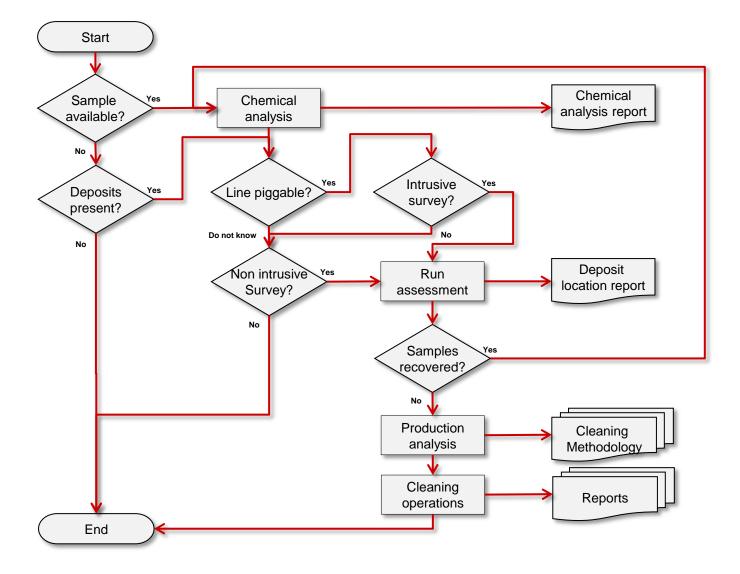
Solving challenges.<sup>™</sup>

This presentation is copyrighted to Halliburton and it and the associated handouts contain information that is confidential and proprietary to Halliburton and is therefore released on the understanding that the recipient will use only the information for conducting business on behalf of Halliburton.

## Agenda

- **Why do we clean Pipelines**
- **Typical Pipeline Deposits**
- Deposit Assessment
- Pipeline Cleaning
- ▶ Inline Inspection
- Decommissioning
- Waste management / disposal

But why clean pipelines?


- Commissioning
- Maintenance / production / efficiency of the system
- To enable inspection
- Change of service
- To decommission

# What we know about any pipeline

| External<br>features<br>Third party Pigging<br>damage<br>Volume of<br>deposits |                               | Operational<br>history<br>history<br>Transported<br>products | Production<br>chemistry<br>Design<br>documentation<br>Material |                                                       |     |
|--------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-----|
| Not much<br>Cause of a<br>Cause of a<br>Cause of a                             | Internal<br>geometry<br>on of | tures<br>Deposits<br>Liquid I                                | Installed<br>components<br>Corrosion<br>holdup                 | Ownership<br>As built<br>Location<br>Pressure<br>drop | lot |

Note: Halliburton does not have ILI technology but do have a proven track record in cleaning and assuring successful pipeline inspections

# **Project Planning / Engineering**



Chemical analysis of a deposit in a pipeline

- Laboratory chemical analysis of the produced fluids
- Samples removed during regular pigging operations





- Issues
  - Is the sample representative?
  - What if there are a number of different types of deposit?
  - If a sample is obtained where in the pipe did it originate?

## Agenda

- Why do we clean Pipelines
- **Typical Pipeline Deposits**
- Deposit Assessment
- Pipeline Cleaning
- ▶ Inline Inspection
- Decommissioning
- Waste management / disposal

# Typical pipeline deposits

- Paraffin wax
- Asphaltenes
- Salts & scales
- Sand and well fines
- Hydrates
- Water
- Erosion & corrosion products
  - "Black powder"
  - FeS's, FeO's, Fe<sub>2</sub>CO<sub>3</sub>
- Emulsions





Scale

Paraffin Wax







Hydrate



Black Powder



Sludge / Emulsion

# Pipeline deposits and probable cause

| Paraffin wax                                   | <ul><li>Fluid temperature change</li><li>Fluid pressure change</li></ul>                                                                                                                                                                                                                           |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Inorganic Scale                                | <ul> <li>Fluid temperature change</li> <li>Fluid pressure change</li> <li>Co-mingled incompatible aqueous fluids</li> </ul>                                                                                                                                                                        |  |  |  |
| Iron Oxide, Iron Sulphide or<br>Iron Carbonate | <ul> <li>Direct chemical reaction of transported fluid<br/>components with pipe alloy</li> <li>Ineffective removal of mill-scale from new pipe during<br/>pre-commissioning</li> <li>Improper dewatering, drying and / or lay-up of pipe<br/>during pre-commissioning or remedial works</li> </ul> |  |  |  |
| Sand / well fines                              | <ul> <li>Produced from the well with the hydrocarbons</li> </ul>                                                                                                                                                                                                                                   |  |  |  |
| Emulsions                                      | Energised mixing of different liquid and / or solid phases                                                                                                                                                                                                                                         |  |  |  |
| Hydrate                                        | Combination of hydrocarbon gas, water, low temperature and high pressure                                                                                                                                                                                                                           |  |  |  |

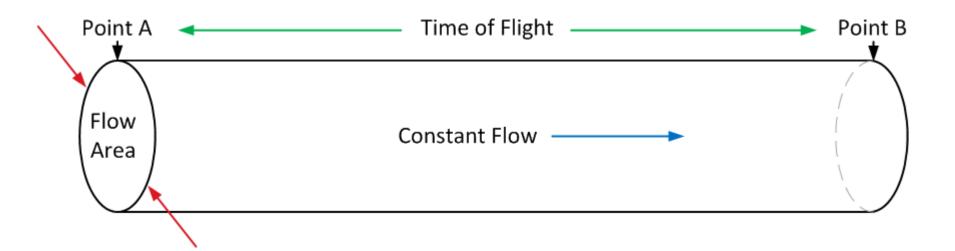
## Impact of deposits

- Production
- Efficiencies
- 🖌 🔶 Reliability
- Product quality
- Profitability

OPEX costs
Pumping costs
Maintenance cost
Risk



## Agenda


- Why do we clean Pipelines
- **Typical Pipeline Deposits**
- Deposit Assessment (3 Methods)
- Pipeline Cleaning
- Inline Inspection
- Decommissioning
- Waste management / disposal

Deposit measurement – Time of Flight

Constant flow conditions

Known flow area / volume

Calculated transit time



## Deposit measurement – Time of Flight example

Achieve constant flow
Launch a gel tracer
Maintain constant flow
Data log flow and pressure
Record time to transit the pipeline



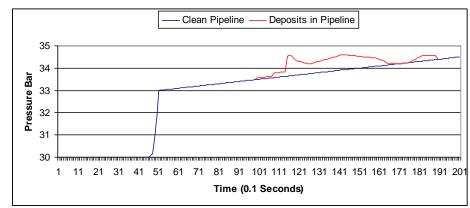
At constant flow the fluid velocity will change based on the available flow area

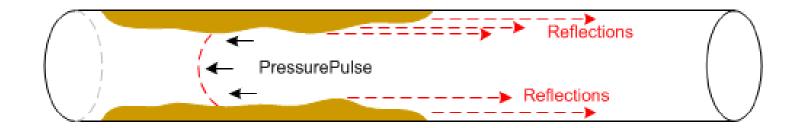
## Time of flight technique

Issues:

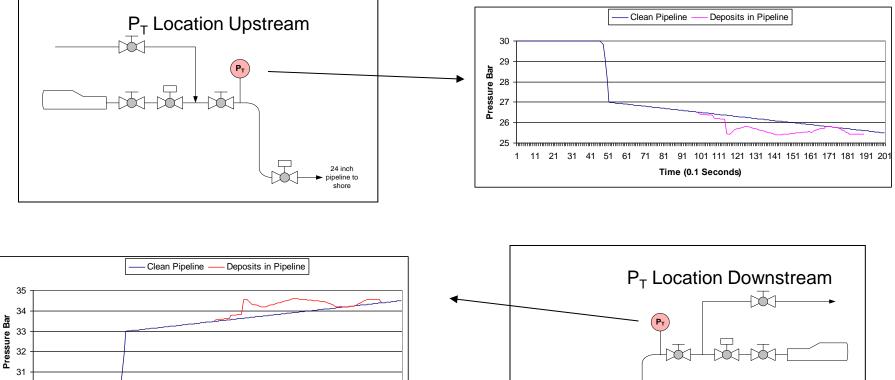
With 'time of flight' the deposit profile will be unknown

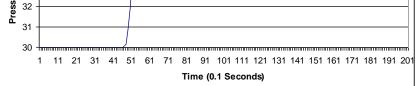
Do we have this ...





• Or this .....




## Deposit location – PressurePulse technology


- Achieve constant flow
- Induce pressure pulse
- The pulse travels at the speed of sound
- The line packing signal reflects the flow conditions at the front of the pulse





## PressurePulse – Line packing profile



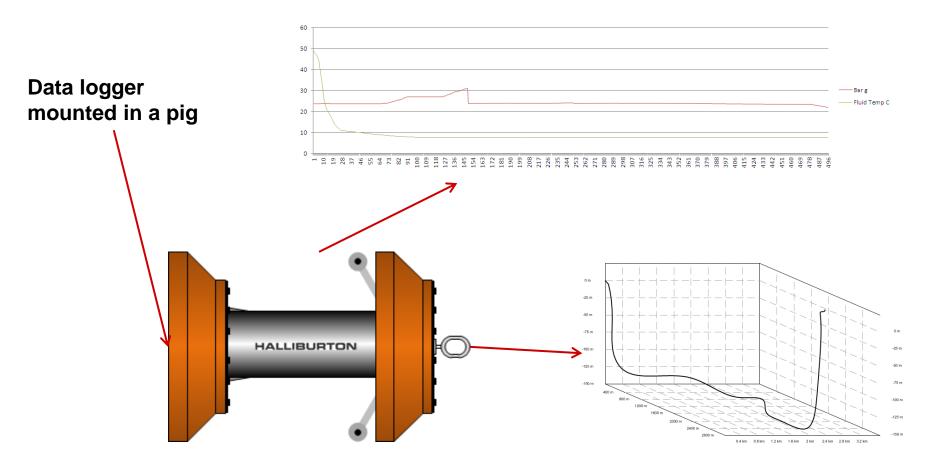




HALLIBURTON

 $\square$ 

24 inch


pipeline from offshore

## Deposit location – PressurePulse technology



Debris assessment tools – Intrusive systems

Data log of pipeline pressure, temperature plus the line geometry



## Deposit location method comparison

|                        | Method 1           | Method 2           | Method 3              |
|------------------------|--------------------|--------------------|-----------------------|
|                        | Time of Flight     | PressurePulse      | Intrusive             |
| Can be done on line    | Yes                | Yes                | Yes / ?               |
| Can locate deposits    | No / ?             | ≈Yes               | Yes                   |
| Can quantify deposits  | Yes                | ≈ Yes              | ≈Yes                  |
| Requires a pig         | No                 | No                 | Yes                   |
| Data analysis required | Yes                | Yes                | Yes                   |
| Accuracy               | Good <sup>#1</sup> | Good <sup>#2</sup> | Good                  |
| Risk of blockage       | Low                | Low                | Low / ? <sup>#3</sup> |
| Cost                   | \$\$               | \$\$               | \$\$\$\$              |

Note #1: The system will quantify the deposit but will not locate the deposit Note #2: Good accuracy under ideal conditions Note #3: If a foam pig is used the blockage risk may be minimal

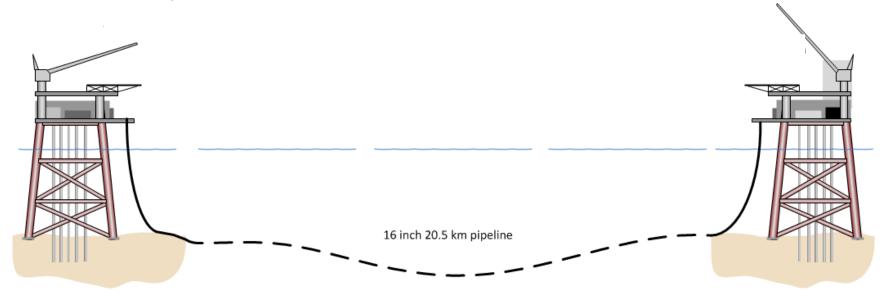
# Three example cleaning projects

- Project 1 GoM
  - Line pressure drop high
  - Throughput declining
  - Complete blockage highly likely

## Project 2 W Africa

- Unable to pig the line
- Unable to inspect the line
- High concerns over corrosion

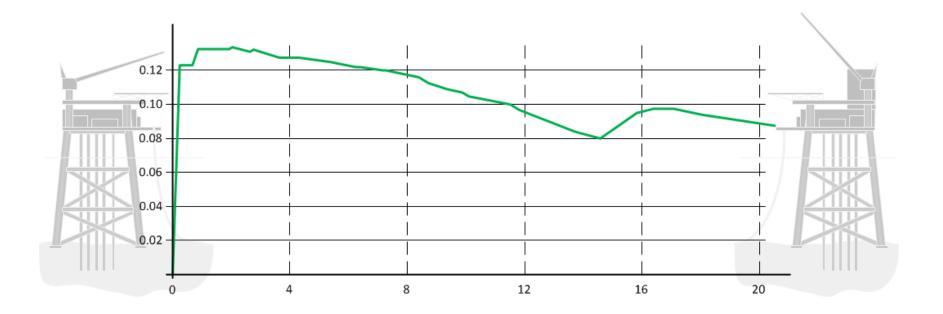
### Project 3 N Sea


- Line to be decommissioned
- Hydrocarbon decontamination scope
- Oil in water acceptance criteria of 20 ppmv

After SureStream Flow Assurance Services a production increase of 3,020 bbl/day After SureStream Flow Assurance Services successful ILI and a production increase of 3,000 bbl/day

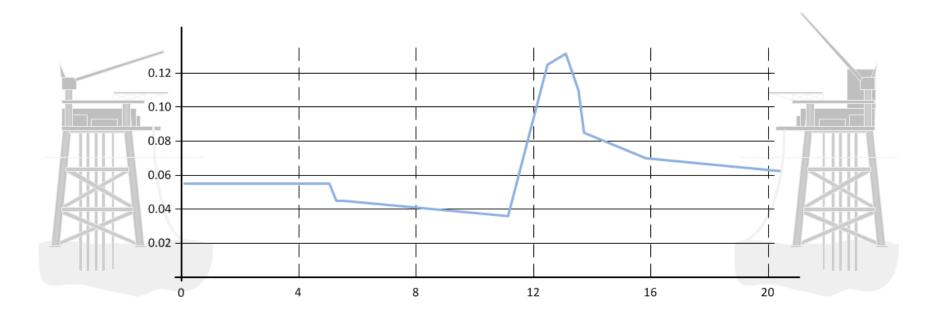
SureStream Flow Assurance Services chemical & mechanical cleaning efficiently resulting in <20 ppm.

In almost all projects after completion of services a production increase has been experienced

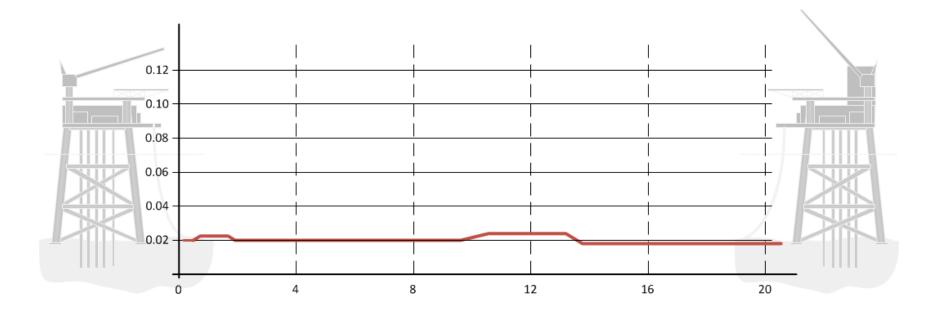




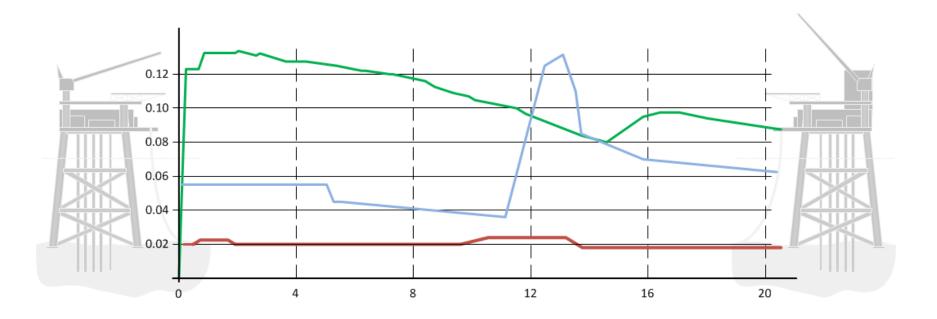

16 inch oil pipeline


20.5 km

- Unknown quantity of deposits in the pipeline
- Cleaning required to enable pipeline inspection




Deposit profile prior to cleaning


Survey indicated approximately 350 cubic meters of material in the pipeline



Deposit profile after the first stage of the cleaning operation



Deposit profile after the third stage of the cleaning operation



### All three profiles

Approximately 577,500 kg of sand and material removed from the pipeline

## **Track Record**

| Location                                 | Survey Fluid                                              | Length | Diameter      | Deposit Type / Operation                                                                                                                 |  |
|------------------------------------------|-----------------------------------------------------------|--------|---------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Thailand                                 | Oil<br>(liquid at the operating<br>pressure)              | 10.9km | 16 inch       | Locate a pig mandrel stuck in the line for several years                                                                                 |  |
| Gabon                                    | Treated sea water                                         | 3.57km | 16 inch       | Deposit assessment                                                                                                                       |  |
| UK                                       | Potable water<br>(mainly liquid but with gas<br>pocket)   | 0.48km | 4 inch        | Locate a sand blockage in a flexible riser                                                                                               |  |
| UK                                       | <ol> <li>Oil export</li> <li>Treated sea water</li> </ol> | 107km  | 16 inch       | <ol> <li>Detect the position of the blockage<br/>(pig stuck)</li> <li>Assess the wax deposit in the line post<br/>remediation</li> </ol> |  |
| UK                                       | Condensate<br>(liquid at the operating<br>pressure)       | 57.9km | 8 inch        | Wax deposit assessment                                                                                                                   |  |
| Norway                                   | Oil                                                       | 100km+ | 8 inch        | Wax deposit assessment                                                                                                                   |  |
| UK                                       | Oil                                                       | 30km   | 8 and 10 inch | Wax deposit assessment                                                                                                                   |  |
| Gabon                                    | Oil                                                       | 20km   | 16 inch       | Sandy deposit (sand, oil and water emulsion). Monitored cleaning operation.                                                              |  |
| North Sea                                | Water                                                     | 3.5km  | 17 inch       | Water flooded for inspection, displaced gas/oil/water. Scale.                                                                            |  |
| Australia                                | Water                                                     | 63km   | 14 inch       | Stagnant. Lost pig.                                                                                                                      |  |
| Netherlands                              | Gas                                                       | 20km   | 12 inch       | Lost object, deposit demo                                                                                                                |  |
| © 2014 HALLIBURTON. ALL RIGHTS RESERVED. |                                                           | 27     |               | HALLIBURTON                                                                                                                              |  |

## Agenda

- Why do we clean Pipelines
- **Typical Pipeline Deposits**
- Deposit Assessment
- **Pipeline Cleaning**
- ▶ Inline Inspection
- Decommissioning
- Waste management / disposal

# Pipeline cleaning / deposit removal

Prior to removal

- Deposit may be evenly distributed or at a specific orientation
- Probably adhered to pipe wall
- Probably cause reduced flow area

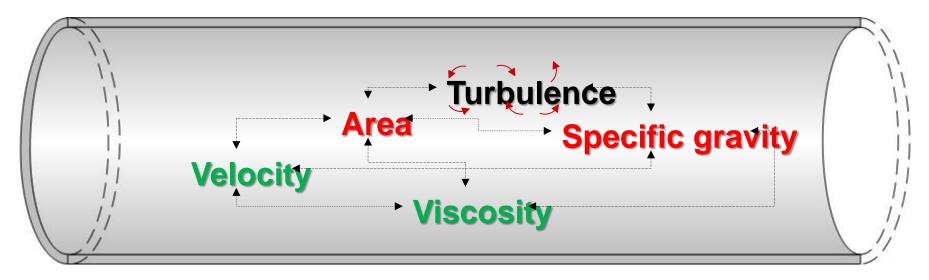
After removal from the pipe wall deposits are

- transported out of the pipeline
- not accumulated at the 6 o'clock position





## Key considerations for pipeline cleaning operations


- If the cleaning is to be completed with routine pigs:
  - How much material is transported with each pig?
  - How much material is in the pipeline?
  - How much material will have to be removed?
  - Where will the removed material be disposed of?
  - How much will disposal cost?

- Pipeline deposit calculations
  - Paraffin wax
  - Sand
  - Corrosion

# Transportation of deposits / debris

Many factors affect particle behaviour

- Fluid properties
- Particle properties
- Flow regime



# **Cleaning with pigs**

Key considerations when using pigs:-

- Deposit hardness
- Deposit adhesion
- Deposit volume
- Deposit abrasion
- Deposit Restriction
- Fluid flow rate
- Flow type
  - Laminar
  - Turbulent
- Fluid properties
- Fluid carrying capacity



# **Transportation of deposits / debris**



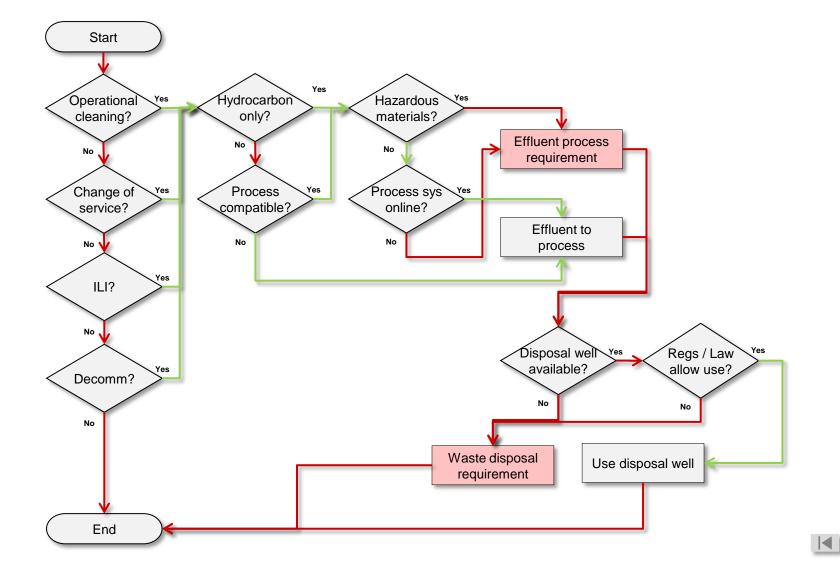


## Transportation of deposits / debris

Fluid design based on deposit and pipeline properties

- Custom formulation per project
- Compatability with production
- Vast database of fluid characteristics
- Particle / fluid interaction reasearch
- Experienced laboratory technicians and chemists
- Extensive track record




## Agenda

- Why do we clean Pipelines
- **Typical Pipeline Deposits**
- Deposit Assessment
- Pipeline Cleaning
- ▶ Inline Inspection
- Decommissioning
- Maste management / disposal

Waste management / disposal

Waste from pipeline cleaning operations has to be disposed ofWaste disposal can be the most costly part of a cleaning programThe three P's for minimising waste disposal costs

Plan, Plan & Plan



# **Project planning for waste disposal**

This presentation is copyrighted to Halliburton and it and the associated handouts contain information that is confidential and proprietary to Halliburton and is therefore released on the understanding that the recipient will use only the information for conducting business on behalf of Halliburton.