

INTERNAL AXIAL CORROSION IN OFFSHORE PIPELINES: INSPECTION & ASSESSMENT

Dr. Christoph Jäger & Abdullahi Atto PPSA Seminar 2014 19th November 2014, Aberdeen, UK

- **1.** Introduction: Long Axial Corrosion
- 2. Impacts of Long Axial Corrosion on ILI and FFP
- **3.** DNV Method: Assessment of Long Axial Corrosion Defects
- 4. Summary & Conclusions

LONG AXIAL CORROSION

typical type of corrosion in crude oil and water injection pipelines:

- internal corrosion along six o'clock position
- coherent corrosion areas of up to several kilometers length
- often high corrosion growth rates (> 1 mm/year)
- synonyms: channeling, channeling corrosion, six o'clock corrosion, bottom-line corrosion
- different shape of corrosion anomalies:
 - smooth and uniform WT reduction (e.g. corrosion/erosion)
 - rough surface, irregular and complex shaped geometry (e.g. MIC)

LONG AXIAL CORROSION: EXAMPLE 1

Smooth and Regular Shape, Groove-like

Copyright © 2014 | NDT Global 19.11.2014

LONG AXIAL CORROSION: EXAMPLE 2

Rough Surface, Irregular and Complex Shape

LONG AXIAL CORROSION: EXAMPLE 3 Chain of Corrosion Pits (Early Stage of Channeling)

IMPACTS OF LONG AXIAL CORROSION...

... on ILI and Assessment

characteristics of channeling corrosion

- ➔ impacts on ILI and assessment:
- ILI technology
 → UT
- cleaning
 - \rightarrow modification of standard procedures
- re-processing/filtering of ILI data
 → eliminate outliers
- reporting & assessment
 - \rightarrow next slides

IMPACTS OF LONG AXIAL CORROSION

Reporting of Detected Anomalies

 coherent corrosion over several km: usually reported as one anomaly per pipe joint (length = joint length, depth = peak depth)

IMPACTS OF LONG AXIAL CORROSION

Reporting of Detected Anomalies

 coherent corrosion over several km, usually reported as one anomaly per pipe joint (length = joint length, depth = peak depth)

> peak depth & length: no meaningful description of complex anomalies

IMPACTS OF LONG AXIAL CORROSION

Assessment of Detected Anomalies

- different codes/standards for calculation of safe operating pressure P_{safe} of metal loss anomalies
- list-based methods:
 - e.g. B31.G, DNV-RP-F101 single
 - input: maximum depth, total length
 - same P_{safe} for anomalies 1 & 2
- data-based methods:
 - e.g. RSTRENG (Effective Area), DNV-RP-F101 complex
 - anomalies described by actual remaining wall thickness profile (river-bottom profile, RBP)
 - well suited for assessing complex shaped anomalies
- all conventional methods: impact of continuous metal loss (→ many bad joints) on system PoF not accounted for

- **1.** Introduction: Long Axial Corrosion
- 2. Impacts of Long Axial Corrosion on ILI and FFP
 - Inspection Technology
 - Cleaning
 - Data Processing
 - Reporting
 - Assessment

3. DNV Method: Assessment of Long Axial Corrosion Defects

- Main Ideas
- Application Examples
- 4. Summary & Conclusions

DNV Method: Overview

- results will be incorporated in revised DNV-RP-F101
- NDT Global involved in testing & reviewing of algorithms
- DNV method gives guidance on
 - extraction of RBPs from UT ILI data
 - calculation of pipeline pressure capacity
 - determination of corrosion growth rates
 - extrapolation of pressure capacity

DNV Method: Overview

JIP (DNV, Statoil, DONG Energy) → "Assessment of long axial corrosion defects – Specification"

- results will be incorporated in revised DNV-RP-F101
- NDT Global involved in testing & reviewing of algorithms
- DNV method gives guidance on
 - extraction of RBPs from UT ILI data
 - calculation of pipeline pressure capacity
 - determination of corrosion growth rates
 - extrapolation of pressure capacity

ASSESSMENT OF LONG AXIAL CORROSION Filtering of WT Data & Extraction of RBPs

- rugged corrosion anomalies and rough internal pipe surface
- → echo loss (missing data) and/or outliers in UT WT data
- important: identification & replacement of erroneous WT values before calculation of RBPs
- → use of stand-off (SO) data:
 - strong signal (1st echo)
 - usually no echo loss/outliers
- WTSO = WT + SO
 - = distance sensor outer pipe wall, ideally constant
 - WT missing or outlier → WTSO outside tolerance band
 → WT replaced by RWT_{SO} = WTSO_{median} SO

ASSESSMENT OF LONG AXIAL CORROSION Filtering of WT Data & Extraction of RBPs: Example

ASSESSMENT OF LONG AXIAL CORROSION Filtering of WT Data & Extraction of RBPs: Example

Copyright © 2014 | NDT Global 19.11.2014

ASSESSMENT OF LONG AXIAL CORROSION Filtering of WT Data & Extraction of RBPs: Example

DNV Method: Overview

JIP (DNV, Statoil, DONG Energy) → "Assessment of long axial corrosion defects – Specification"

- results will be incorporated in revised DNV-RP-F101
- NDT Global involved in testing & reviewing of algorithms
- DNV method gives guidance on
 - extraction of RBPs from UT ILI data
 - calculation of pipeline pressure capacity
 - determination of corrosion growth rates
 - extrapolation of pressure capacity

Copyright © 2014 | NDT Global 19.11.2014

ASSESSMENT OF LONG AXIAL CORROSION

Calculation of Pipeline Pressure Capacity

Requirements:

- complex corrosion anomalies
 → assessment based on RBPs
- standard methods:
 P_{safe} (pipeline) = P_{safe}(worst joint)
- however: minimum P_{safe} not sufficient to describe condition of pipeline
- example: P_{safe} histograms with same minimum P_{safe} but different number of "bad" joints
- many bad joints (e.g. channeling)
 → "system effect" → higher PoF

Calculation of Pipeline Pressure Capacity

Requirements:

- assessment based on RBPs
- account for potential increase in PoF

DNV Method:

- basis: DNV-RP-F101 Complex Shaped Defects Method (Part A)
- affected area divided into subsections
- P_{safe} calculated for all subsections
- $P_{safe}(section i) \rightarrow PoF(section i)$ for considered assessment pressure
- total PoF(pipeline) calculated from PoF of all sections i
- PoF(pipeline) vs. max. allowable PoF (safety class)
 → P_{safe}(pipeline)

Calculation of Pipeline Pressure Capacity

Example:

- water injection pipeline affected by channeling corrosion
- assessment based on 190 pipe joints with remaining WT < threshold
- RBPs extracted according to DNV method
- P_{safe} calculated for sections of 1.7m length (DNV-RP-F101 complex)
- P_{safe}(pipeline) = 260 bar
- P_{safe}(worst joint) = 268 bar
- P_{safe}(pipeline) is 8 bar (3%)
 below P_{safe}(worst joint)
 → system effect
- more joints with low P_{safe}
 → higher system effect

DNV Method: Overview

JIP (DNV, Statoil, DONG Energy) → "Assessment of long axial corrosion defects – Specification"

- results will be incorporated in revised DNV-RP-F101
- NDT Global involved in testing & reviewing of algorithms
- DNV method gives guidance on
 - extraction of RBPs from UT ILI data
 - calculation of pipeline pressure capacity
 - determination of corrosion growth rates
 - extrapolation of pressure capacity

ASSESSMENT OF LONG AXIAL CORROSION Corrosion Growth Analysis (CGA)

- basis: results of consecutive UT ILIs
- list-based CGA (→change in peak depth): not sufficient for long complex corrosion features

 Level 4 of DNV Method: calculation of corrosion growth rates from comparison of RBPs, i.e. data-based CGA

ASSESSMENT OF LONG AXIAL CORROSION Corrosion Growth Analysis: One Pipe Joint

ASSESSMENT OF LONG AXIAL CORROSION Corrosion Growth Analysis: One Pipe Joint

Corrosion Growth Analysis: One Pipe Joint

GLOBAL

Corrosion Growth Analysis: One Pipe Joint

GLOBAL

Corrosion Growth Analysis: Results for 190 Pipe Joints

GLOBAL

ASSESSMENT OF LONG AXIAL CORROSION Extrapolation of Pressure Capacity: P_{safe} vs. Growth Rate

SUMMARY & CONCLUSIONS

- long axial corrosion \rightarrow impacts on ILI & assessment
- can be reliably detected & sized using UT ILI
- feature list information not sufficient to characterize complex anomalies
 - → data-based assessment methods (pressure & corrosion growth) required
- methodology specifically designed for assessment of long axial corrosion was developed by DNV:
 - filtering of WT using SO, especially helpful in case of non-optimum data quality
 - accounts for higher PoF resulting when many pipe spools are affected by severe corrosion
 - NDT experience: DNV method proved good applicability

THANK YOU!

NDT Global GmbH & Co. KG

Friedrich-List-Str. 1 76297 Stutensee, Germany www.ndt-global.com