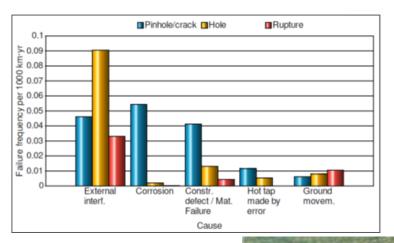
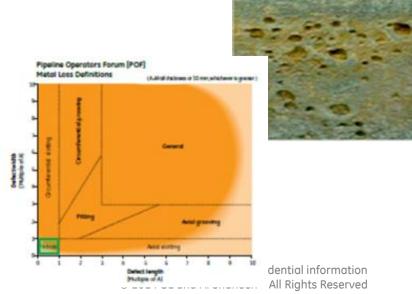


Martin Bluck, Senior Product Manager 19th November, 2014

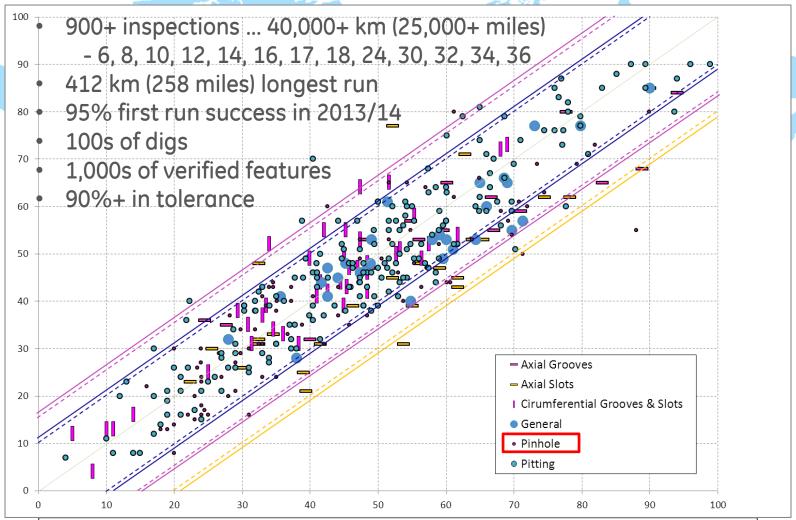
Outline

- Background
- MagneScanTM (MFL4) system
- Finite Element modelling
- "Pinhole" blind test program
- In-line inspection, analysis report, and dig verification
- Conclusions

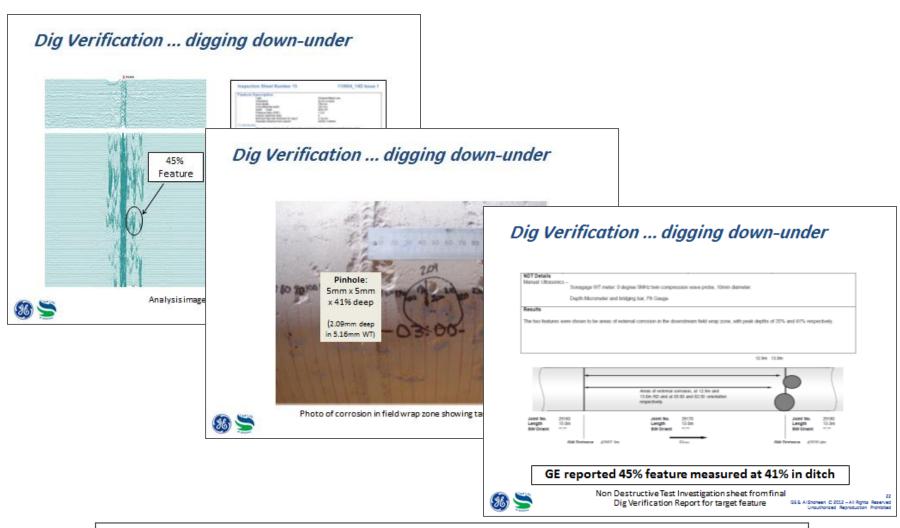




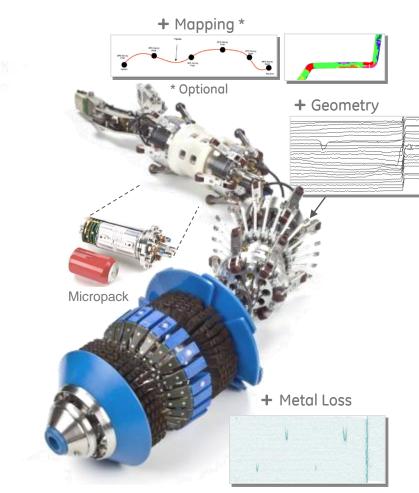
Background ... 'Pinhole' corrosion


- 'Pinhole Corrosion' & 'Hot Taps made by error' significant causes of pipeline failure – EGIG report, Dec '11
- Result of typical corrosion mechanisms e.g. MIC or 3rd party activity e.g. illegal tapping
- 'Pinholes' problematic for gas & liquid operators as a primary threat for leaks
- POF definition:- Length < 1A & Width
 < 1A. If wall thickness (t) < 10mm
 then A = 10mm, if ≥ 10 mm then A = t
- Typically beyond the capability of MFL systems

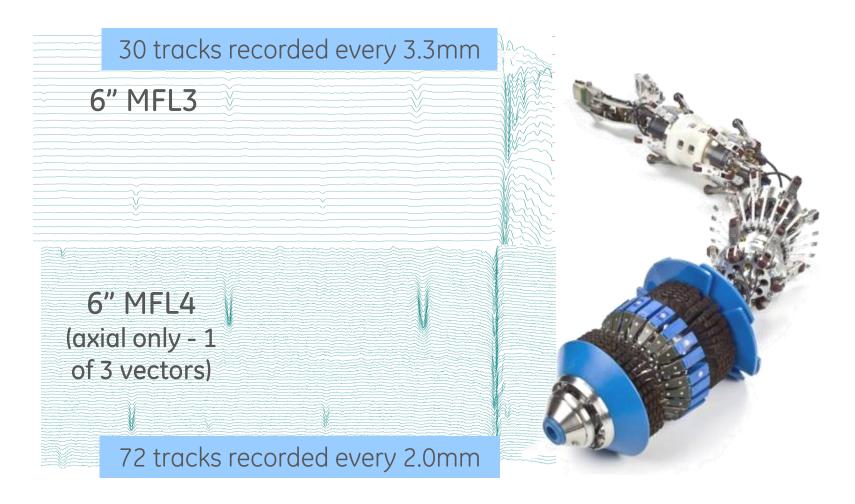
MagneScanTM (MFL4) ... dig verification



MagneScan[™] (MFL4) ... dig verification



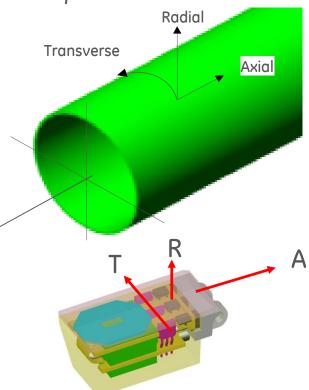
Pinole 5mm x 5mm x 41% in 5.16mm wt 14" pipe from


MagneScanTM (MFL4) ...attributes

- Hall Effect sensors for metal loss in 3 axes ... 216 on 6" system
- 5.4mm circumferential separation ... 2mm axial sampling
- Integrated High Resolution Caliper ... 24 sensors (1 per 20mm/0.8"circ.)
- Fiber Optic Gyroscope IMU ... 3D mapping & curvature/strain
- High field "Speed-stable"
 Magnetizer 0 to 5m/s (11 mph)
- ATEX Certified

High Resolution ... Multi-mission information © 2014 GE and Al Shaheen - All Rights Reserved

MagneScan[™] (MFL4) ...high resolution



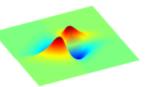
Enhanced axial & circumferential resolution ... effectively a 3 x zoom

MagneScanTM (MFL4) ... Hall Effects in 3 axes

"Leakage" is a Vector quantity

Each MFL4 sensor track measures the 3 orthogonal components of this vector

Axial

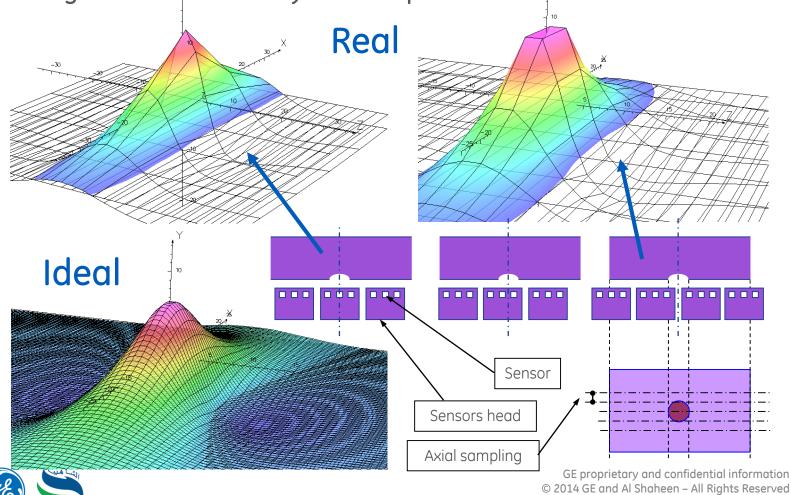

- Measured down pipe
- Sensitive to "Volumetric" losses
- Measure nominal field strength

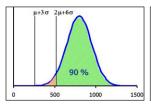
Radial

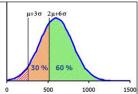
- Measured out/in from center
- Highest sensitivity to changes in depth
- Identifies start and end of features

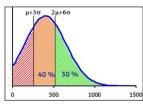
Transverse

- Measured circumferentially around pipe
- Added sensitivity to in-plane shape & width



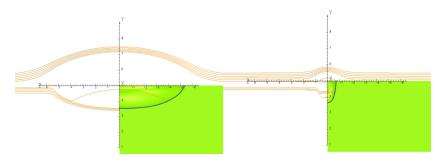

Finite Element Modelling ... sensor spacing & scan interval

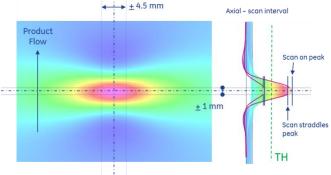

MFL signals are affected by sensors position relative to the defect



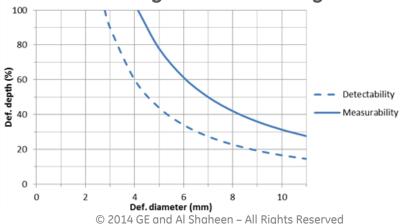
Finite Element Modelling ... conclusions

1. Increasing # of sensors & frequency of scans does not improve detection




Detectable and measurable Detectable, not measurable Not detectable* (@90%PoD)

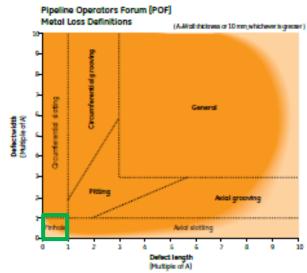
Rose Criterion: SNR > 5

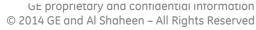

2. Dimensions of smallest Pinhole detectable with MFL were calculated

3. Below a minimum defect size signal amplitude falls below the noise threshold

4. MFL signal amplitude is lower for "Pinholes" leading to under-sizing

MagneScan (MFL4) ... Pinhole" specification


Parame	ter		l Metal ss	Pitt	ing	Ax Groo		Circu Groo		Pinh **		Ax Slot		Circu Slott	
Depth @ POD = 90%	nwt	5' @4	% 4A	89 @2	-	8º @4 <i>P</i>		59 @2A		15 @0.		15 @0.5		5% @2A*	-
	Cerytainty	80%	90%	80%	90%	80%	90%	80%	90%	80%	90%	80%	90%	80%	90%
Depth Sizing Accuracy	nwt (+/-)	8%	10%	8%	10%	-13%/ +8%	-15%/ +10%	-8%/ +13%	-10%/ +15%	-13%/ +8%	-15%/ +10%	-17%/ +8%	-20%/ +10%	-8%/ +13%	-10%/ +15%
Width Sizing Accuracy	mm (+/-)	12	15	12	15	12	15	12	15	12	15	12	15	12	15
Length Sizing Accuracy	mm (+/-)	7	10	4	5	7	10	7	10	4	5	7	10	7	10


POD @ 90% 5mm PH > 15% in ERW

Pinhole detection only: 4mm > 30% deep;
 3mm > 40% deep; 2mm > 90% deep

Depth Sizing @ 90% Certainty

- PH > 5mm diameter <= 50%, -15%/+10%
- PH > 5mm diameter > 50%, -20%/+10%

ExonMobil

- World's largest publicly traded international oil & gas co.
- Industry leading inventory of global oil & gas resources
- World's largest refiner of & marketer of petroleum products
- Applying science & innovation to find better, safer, & cleaner ways to deliver the energy the world needs

AVONMOUTH PIPELINE

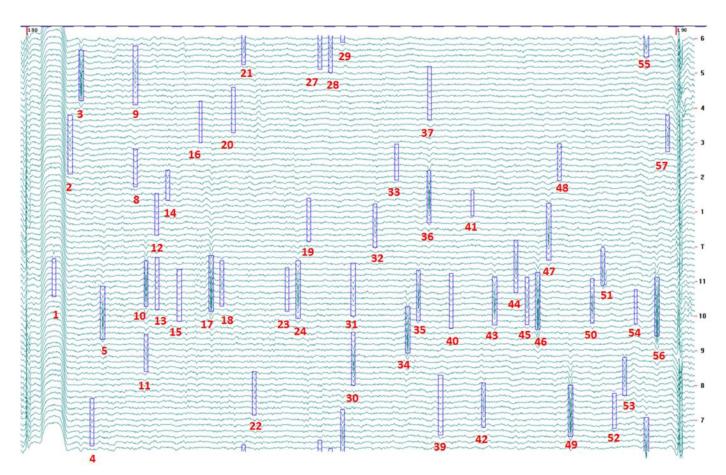
 Fawley Refinery to Avonmouth Terminal

- 6" x 133km refined product
- Previously inspected with MFL 22/03/05; 21/02/98; 23/08/93
- Concerns over 'Pinholes' & 'illegal tapping'

 GE proprietary and confidential information
 © 2014 GE and Al Shaheen All Rights Reserved

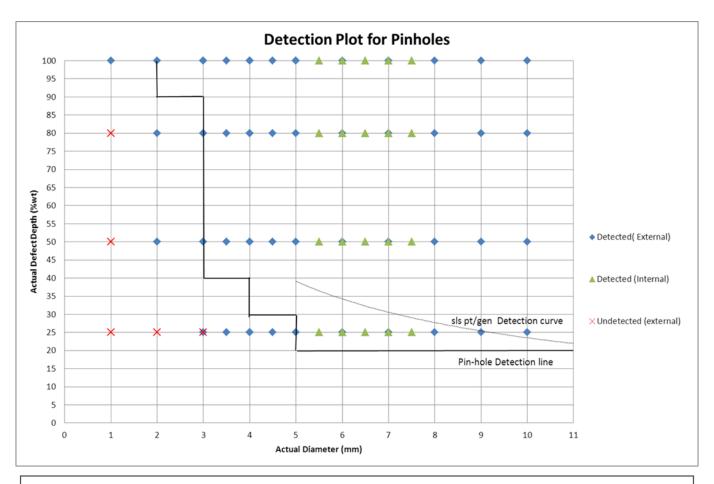
ExxonMobil test program ... set-up

- 12 pulls with 06" MFL4
 - pulls from 0.5 to 4.5 m/s
 - included one conditioning run
- 77 features in 5.6mm wt test spool
 - 57 external & 20 internal
 - 41 drill hole & 36 conical
 - 64 covered by detection specification,
 13 below
 - 44 covered by sizing specification, 33 below
- Note: assumed diameter of conical features = average of top & bottom e.g. 5/3 = 4mm


	External	Defect position		Defect Depth %	Defect	Defect	Defect	External	Defect position	Defect Asimuth	Defect Depth %	Defect	Defect
Number	/	from start of	(hra) *		Diameter(s)	Profile **	Number	1	from start of	(h m) *		Diameter(s)	Profile**
	Internal	spool (ext			(mm)			Internal	spool (ext			(mm)	
-		section)		-	1.		_	JJ8	metion)	17	- 1		17
3	6x0cmel	250	12	100			55	Intornal	6200	2	25	0/5	Δ
2	external	400	4	25	2	l ñ	50	Int ornal	6500		50	2/5	Ŭ
	betomel	500				<u>-</u>	60	In omal	6400	,	50	7/2	ŭ
-		500				7							₩
4	b: tomal			50	5/3		61	Intomal	6700	2	100	5/5	Y.
5	External	700	11	ಐ	7		62	Intomal	6900	11	25	7/5	
	bx to mail	500	12	25	1		65	Intomal	7000	5	100	7/5	∇
7	betomel	900	1	50	1		64	Intornal	7600	4	80	9/5	
	b: tomal	1000	4	100			65	Intomal	7 700	2	50	6/5	····· ij ·····
				3	10				l		l		ŏ
	bx tomal	1000				├ <u> </u>	66	Intomal	8.500	1	25	8/5	Y
10	bx to mail	1100	12	80	5	_ ⊔	67	Intomal	5400		50	10/5	⊻
11	External	1100	10	100	5/1	lV	65	Intomal	8700	7	25	10/5	V
12	External	1200	2	100	2		60	Intomal	8 800	2	100	6/5	
15	batemal	1200	12	25	7		70	Intomal	9100	11	25	9/5	$\overline{\nabla}$
14	bitomel	1500		50	5/2		71	Intomal	9 200		50	6/5	ŭ
15	b: tomal	1400	12	50	5	 	72	Internal	9.200		100	10/5	ÿ
						ŀ\¦							
16	External	1600		50	2		75	Intomal	9.500	1	50	8/5	
17	External	1700	12	80	10	Д	74	Intomal	9500	2	80	10/5	∇
15	External	1500	12	50	5/4	V	75	Intomal	2600	2	50	7/5	7
19	External	1900		2	5/1	<u>V</u>	76	Internal	9500		100	9/5	
20	External	1900		50	5/1	Ŭ	77		2200		50	9/5	ŏ
20	External	2000		50	5/1		77	intomal	3900	1 2	50	9/5	U
						<u></u>							
22	External	2100	9	80	3								
25	5x3cmal	2400	12	ಕಾ	2								
24	External	2500	12	50	10	П							
25	External	2600			1								
25	Extornal	2600		50	4	l ä	- 16	Run	IMin	(m/s) IMax	(m/	c)
							- 11	\u11	IVIIII	(111) 3	/ livia/	v (my	3/
27	External	2700	,	50	5/4	<u>\$</u>							
25	5x3cmal	2500	7	50	5		- 11	1		1.0	- 1	1.2	- 1
22	External	2900		100	5/2	∇	- 1	-		1.0		1.2	
50	External	5000	10	80	5	i ii							
51	External	5000	12	2	ē		- 12	2		1.0	- 1	1.2	- 1
		l	1	50		ă	١.	-		1.0			
	B: tomal	3200					٠.				- 1		- 1
55	External	3400	4	2	6	<u>-</u>	- 13	3	- 1	1.0	- 1	1.2	
54	b:temal	3500	22	100	7		- 1	•			_		
25	External	3600	12	80			- L			4.0	- 1	4 2	- 1
36	External	5700		100		<u>Q</u>	- 14	1	- 1	1.0	- 1	1.2	
27	betomel	5700	6	2	5/2		- 1						_
	b: tome!	5500			2	ŏ	- 1	-	- 1	0 5	- 1	0.6	- 1
				_		분	- 1:	5	- 1	0.5	1	0.6	- 1
	botomal	5500	,	2	5/3	L <u>W</u>	- 1						
40	External.	3900	12	25	5		- 1	5	- 1	0.6	- 1	0.6	- 1
41	bx to mail	4100	3	25	3		10)		0.0	- 1	0.0	- 1
42	external	4200	,	100	5/3	<u>V</u>							
45	briane!	4500	12	100		·····	- 17	7		2.0	- 1	2.4	- 1
						ŀ봄	- 1	,		2.0	- 1	2.4	- 1
	b: tomal	4500	1	50	7								
-45	bx to mail	4600	12		5/2	 		3	- 1	2.0	- 1	2.5	- 1
46	by to me l	4700	12	100	9		- 19)	- 1	2.0	- 1	2.5	
47	External	4500	2	50	ā	i i							
	Extornal	4900		. m	5/1			9	- 1	2.6	1	3.2	- 1
45	by tomal	5000		50		X	15	,	- 1	2.0	- 1	J. Z	- 1
50	External.	5200	12	100	4	브	- 11	10	- 1	2.6	1	3.2	- 1
51	External	5500	1	100	5/4	∇	1.	-0		2.0		J. 2	
52	8x to me l	5400	9	25	5/4	<u>V</u>							
55	External	5500	10	100	3	<u></u>	- 11	11	- 1	3.2	1	4.4	- 1
54	Extornal	5600	12		4	ñ	- 1:				_		

4.5

ExxonMobil test program ... detection



• POD @ 90% 5mm PH > 20% NWT in SLS Pinhole Detection only: 4mm > 30% deep; 3mm > 40% deep; 2mm> 90% deep

ExxonMobil test program ... detection

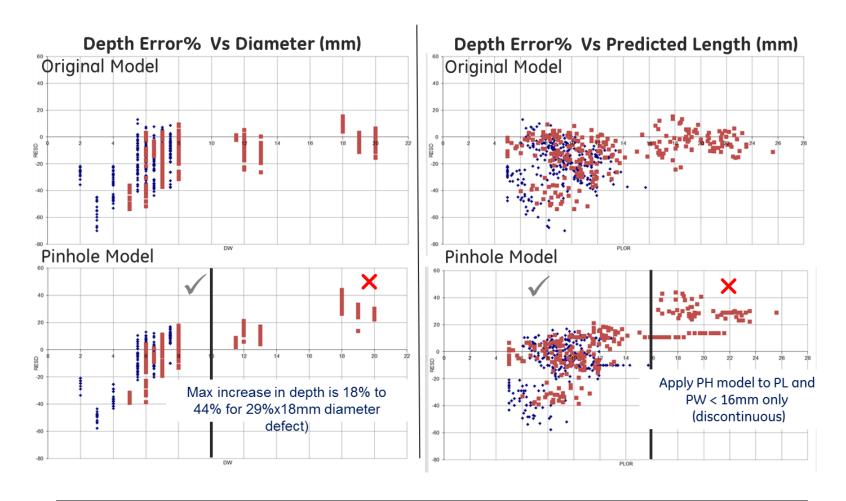
100% detection of 64 in-spec features across all runs 94% detection of all 77 features across all runs

mation eserved

ExxonMobil test program ... depth sizing

In-Spec Features

Depth	ln	Out	ln%	Min%	Max%	Rge%	- %	+ %
		-				_		
25%	49	6	89%	20	41	21	-5	16
50%	54	1	98%	38	65	27	-12	15
80%	55	0	100%	60	90	30	-20	10
100%	49	6	89%	76	90	14	-24	-10
Int	207	13	94%					
Depth	ln	Out	ln%	Min%	Max%	Rge%	- %	+ %
25%	54	12	82%	15	45	30	-10	20
50%	55	11	83%	31	68	37	-19	18
80%	55	11	83%	52	90	38	-28	10
100%	62	4	94%	75	90	15	-25	-10
Ext	226	38	86%					
Depth	ln	Out	ln%	Min%	Max%	Rge%	- %	+ %
25%	103	18	85%	15	45	30	-10	20
50%	109	12	90%	31	68	37	-19	18
80%	110	11	91%	52	90	38	-28	10
100%	111	10	92%	75	90	15	-25	-10
TOTAL	433	51	89%		_			


- Sizing performed with optimized pinhole algorithms
- 44 in-spec features (>=5mm) sized within specification
- Defect under metal casing was undersized as expected
- 43 non-spec features (<5mm) undersized as predicted by FEA

89% of in-spec features within depth sizing tolerance

ExxonMobil test program ... historical data

Sizing improved significantly if correctly classified as a pinhole ... if incorrect potential to overcall by up to 30%

ExxonMobil ... inspection & report

- Completed full survey of Fawley Refinery to Avonmouth Terminal pipeline on 9th/10th July 2013
- Inspection confirmed 133.141km length & predominance of seamless pipe of 5.6mm wall thickness
- "Pinhole" listing included 49 entries (25 categorized as pinholes, and 5 features in 9.27mm wt pipe)
- 15 inspection/dig sheets provided based on Feature Selection Rules including 2 for Pinhole features

				Pinh	ole Model Lis	sting						
The pinhole si	zing model h	as been a	pplied to t	he following for	eatures:							
	Fawley Refin	ery to Ave	onmouth R	efinery								
Upstream Girth Weld	Absolute Distance (metres)	Relative Distance (metres)	Spool Length (metres)	Anomaly Dimension Class	Orientation (hrs:mins)	Nominal Wall Thickness (mm)	Length (mm)	Width (mm)	Depth %WT	INT/ EXT	Estimated Tolerance %WT	Depth + Estimated Tolerance %WT
~	~	~	-	-	-	-	~	~	-	~	T,	-
2400	2222.649	2.601	4.217	PINH	12:24	5.60	2	6	50%	EXT	25%	75%
71390	75931.002	7.611	12.059	PINH	01:03	5.60	7	8	68%	EXT	5%	73%
72410	77097.594	0.132	12.594	PINH	06:44	5.60	8	8	65%	EXT	5%	70%
73470	78325.881	11.810	13.140	PINH	06:13	5.60	2	5	44%	EXT	25%	69%
124500	132164.748	0.953	5.908	CISL	04:16	5.60	8	24	63%	EXT	5%	68%
73820	78707.050	9.734	11.525	PINH	04:48	5.60	5	9	55%	EXT	10%	65%
77980	83308.355	2.899	4.791	PINH	06:06	5.60	5	9	50%	EXT	10%	60%
72420	77121.839	11.783	13.025	PINH	07:11	5.60	7	8	51%	EXT	5%	56%
120940	129208.237	6.154	8.473	PINH	06:14	5.60	3	6	34%	EXT	20%	54%

Inspection Sheet Number 6

437040_06A Issue 1

Feature Description

Type:
Onentation:
Axial length:
Circumferential width:
Depth - Peak:
Pressure Ratio (ERF):
Feature Selection Rule:
Nominal Pice wall thickness for spool:

Absolute Distance from Launch

External Metal Loss (Corrosion Cluster) 12:25 (o'clock) 162 mm 62 mm 54 % WT 1,251

1 5.60 mm 2222 598 metres

Comments

This isolated metal loss feature has the appearance of corrosion. This feature is in close proximity to an attachment.

There is a pinhole within this feature.

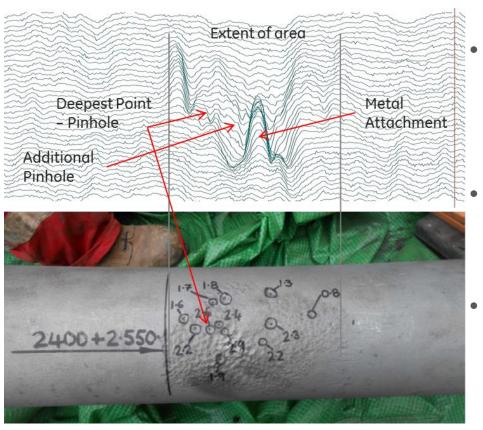
Feature Location

Strip Map Number: FAPIAL/02

Reference/s:

Upstream References	Downstream References
1. GATE VALVE	2. GATE VALVE
(Girth Weld 110 + 0.439 m)	(Girth Weld 3500 + 0.456 m)
Distance from Launch: 27,142 m	Distance from Launch: 3341,142 m
Distance from Ref. Girth Weld: 2192.906 m	Distance from Ref. Girth Weld: 1121.094 m
3. OFFTAKE-SPHERE-TEE	4. MAGLOGGER GM 5
(Girth Weld 20 + 0.395 m)	(Girth Weld 8600 + 3.505 m)
Distance from Launch: 1.680 m	Distance from Launch: 8777.118 m
Distance from Ref. Girth Weld: 2218.368 m	Distance from Ref. Girth Weld: 6557.070 m.
5. GATE VALVE	6. MAGLOGGER GM 6
(Girth Weld 10 + 0.286 m)	(Girth Weld 10160 + 9.167 m)
Distance from Launch: 1,005 m	Distance from Launch: 10505.874 m
Distance from Ref. Girth Weld: 2219.043 m	Distance from Ref. Girth Weld: 8285.826 m

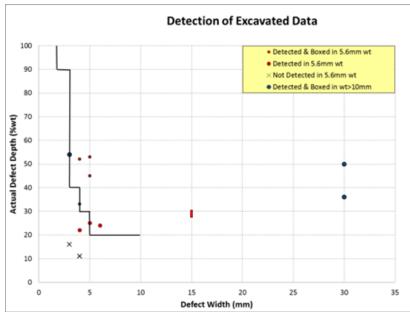
Reference Girth Weld


The reference girth weld at the Fawley Refinery (upstream) end of the feature spool is number 2400. The location of this weld is 2192.906 metres downstream from reference 1 and 1121.094 metres upstream from reference 2.

Feature:

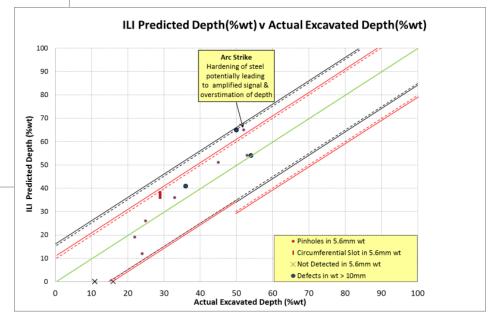
The feature is located 2.550 metres downstream from the reference girth weld. The feature is located 1.667 metres upstream from the downstream girth weld (girth weld 2410)

ExxonMobil ... dig verification



- Overall length reported slightly shorter due to low level corrosion around the periphery
 - Pin Hole: Two reported and found. Deepest actual below PII's published specification
- Capability to detect & size pinholes validated on multiple features from 7+ dig sites

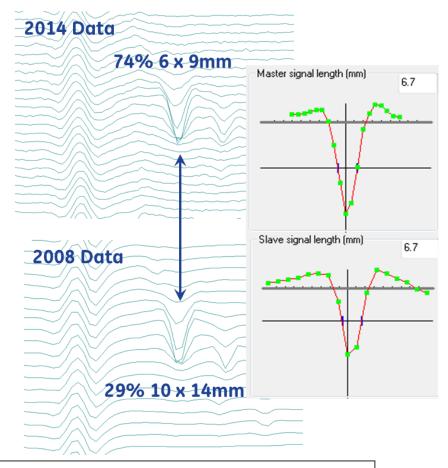
	PII li	nspection R	Report	In-Field Measurement				
	Depth	Length	Width	Depth	Length	Width		
Overall Area - (Cluster)	54%	162mm	62mm	53%	202mm	144mm		
Deepest individual Pin-Hole	50%	3mm	6mm	53%	4mm	5mm		



ExxonMobil ... dig verification

All features detected were sized within depth sizing tolerances, including 3 features in 9.27mm wall thickness pipe

- 11 of 13 features found were detected
- 2 pinhole features not detected were below the detection threshold.



Off-shore example ... North Sea

- Metal loss feature reported in 2008 as 29% x 10mm x 14mm (Pinhole)
- Same feature reported in 2014 as 74% x 6mm x 9mm (Pinhole)
- Improved axial & circumf. resolution better captures signal profile
- Higher resolution triax array & new algorithms for more accurate sizing
- Repeatability of MFL enables assessment of corrosion growth rate

More accurate sizing of "Pinhole" feature ...
Signal to signal repeatability for Corrosion Growth Assessment

Conclusions

- capability of MagneScan (MFL4) to detect & size
 "Pinhole" features validated in field
- enhanced performance through latest generation hardware, software, algorithms, & analysis processes
- modelling & testing suggests hardware configuration is optimal for this application
- further work required on discrimination of "Pinholes" in heavily patterned seamless pipe
- success through Pipeline Owner/Operator & ILI Vendor working together

In the last 4 years more than 800 inspections have been completed on & off-shore with the latest generation MFL ILI technology, capturing information on tens of thousands of kilometres of pipe, and generating a significant volume of dig verification data.

In collaboration with Oil & Gas pipeline operators around the world this growing dig verification database has been utilized to improve software models, algorithms, & analysis processes to validate and further enhance system detection, sizing, & reporting capabilities.

This paper focuses on the recent collaboration between ExxonMobil and PII, to investigate system capabilities with respect to "Pinholes", to address a known threat to a specific pipeline in the United Kingdom.

This paper will describe the:

- Evolution of the "Pinhole" specification that captured the interest of ExxonMobil.
- Use of Finite Element models to predict entitlement for characterization of "Pinhole" type defects
- Detail of and results from the ExxonMobil sponsored test program that was conducted in early 2013
- The in-line inspection, analysis report, and dig verification that followed for the pipeline in question.

This joint paper prepared by PII in collaboration with ExxonMobil will reflect the perspective and synergy of ILI vendor & and Pipeline Owner/Operator

At PII, we are dedicated to predicting our customers' potential problems, before they become real problems.

Our heritage of providing reliable and

accurate data sets us apart from our

competitors, and helps promote

environmental and public safety. Together with our

customers, our goal is zero pipeline failures.

000111000110

Ensure we have the right people with the right skills and competencies, working together collaboratively, and focused on the customer

We will no longer be all things to all customers...
we will work closest to clients that value accurate

SIMPLIFY

and reliable data

Strengthen our
NPI process
to deliver
products that
our customers
want, on time
and to budget

NPI DELINERY

ZeroPipeline
Failures

OUR PROCESSES

Identify and develop multiple routes to grow

BROADEN OUR BASE

Make it easier for clients to work with us

safety safety e integrity

PII Confidential and Proprietary