

Operational Pigging A Frontline Tool to Control Internal Corrosion of Pipelines Jozef Soltis / Daniel Sandana/ Paul Birkinshaw

Paul Birkinshaw, MACAW Engineering 18th November 2015

CONTENT

- 1. Introduction
- 2. Corrosion management the industry challenge
- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

INTRODUCTION

It is widely acknowledged that **operational pigging** is a key frontline O&M activity for controlling **internal corrosion** in oil and gas pipelines

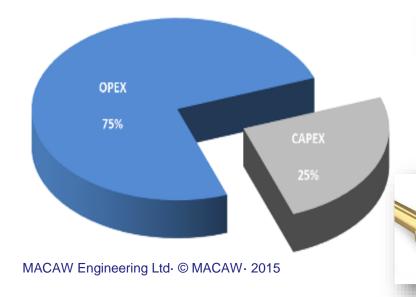
- The term operational pigging can cover a wide range of pigging operations
- In general it can be interpreted as 'systematic online pigging for in-service pipelines as part of an established maintenance routine'
- Operational pigging is often referred to as:
 - Production pigging
 - Routine pigging
 - Maintenance pigging
 - Combinations of the above
 - Can also cover ILI Pigging

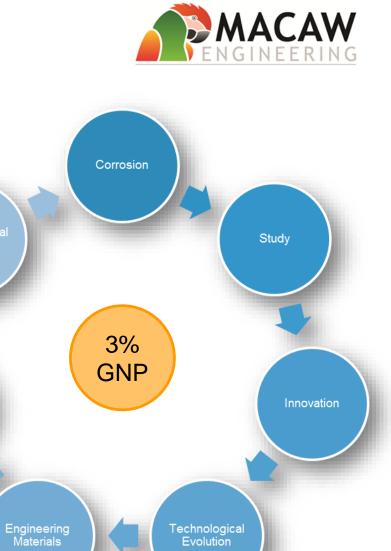
CONTENT

1. Introduction

2. Corrosion management – the industry challenge

- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

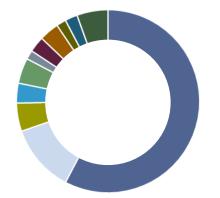

COST OF CORROSION


Science
Mitigation
Management

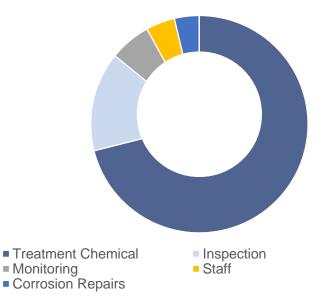
- \$276B (NACE US Corrosion Costs Study 1998 – 3.1% GDP)
- ~30% can be prevented
- Elimination of corrosion by control technologies does not completely negate the overall economic cost

Practices

 Corrosion control cost analysis benefit balance...



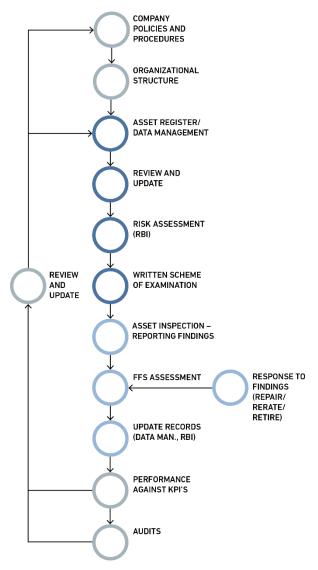
PIPELINE CORROSION STATISTICS


Main causes of pipeline failures

- Internal Corrosion
- Damage by others
- Construction Damage
- Pipe
- Earth movement
- Other

- External Corrosion
- Weld
- Overpressure
- Joint
- Valvefitting

Typical distribution of expenditure in pipeline corrosion activities


Corrosion Management is important and costly

CORROSION MANAGEMENT

Getting to grips with corrosion requires a clear strategy and holistic approach to:

- Proactively identify corrosion threats and related risks
- Identify mitigation controls and conduct their implementation
- Ensure mitigation measures are effective
 - Corrosion monitoring
 - Inspection regimes
- Establish and implement corrective actions
 - Review and Upgrade CMS tools & assessment methods
- Performance monitoring and auditing of integrity management
 - Independent audits
 - · Regular system reviews
- Balanced: Non-biased to stakeholders
 - Industrial standards
 - Best practices
- Transparent process

UK PIPELINES & REGULATORY FRAMEWORK

UK HSE Energy Division (ED)

Setting strategy & priorities for pipelines

Key Instruments

- Health & Safety at Work Act 1974
- Pressure Systems Safety Regulations 2000 (PSSR)
- Pipeline Safety Regulations 1996 (PSR)
 - Goal setting approach to ensure risks are <u>ALARP</u>
- Major Accident Hazard (MAH) pipelines
 - 22,000km Gas & 1,100km other
 - Notifications / MAPD / Emergency Response
- Hazardous Industries Directorate (HID)
 - HSE pipeline inspectors

Recent HSE initiative – KP4 programme

• Aging & Life Extension (ALE)

PIPELINE SAFETY REGULATIONS (PSR)

Only 31 Clauses (on 8.5 pages)

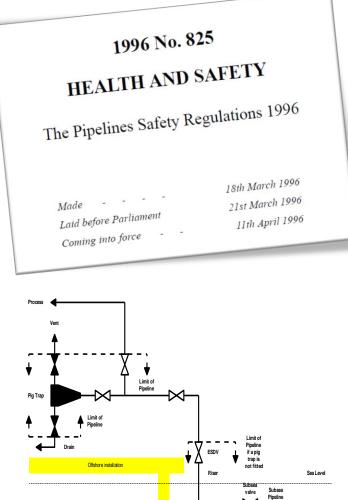
•1-4 (Part I) Definitions (including *'Meaning of pipeline'*)

•5-17 (Part II)

•18-27 (Part III) MAH Pipelines

General

•28-31 (Part IV) Miscellaneous

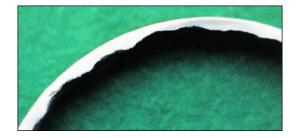

Clause 5 (Design)

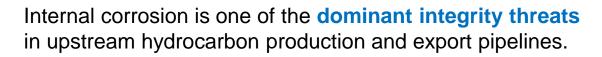
The operator shall ensure that no fluid is conveyed in a pipeline unless it has been so designed that, so far as is reasonably practicable, it can withstand:

- The forces arising from its operation;
- The fluids that may be conveyed in it; and
- The external forces and chemical process to which it may be subjected.

Clause 13 (Maintenance)

The operator shall ensure that a pipeline is maintained in an efficient state, in efficient working order and in good repair.


CONTENT



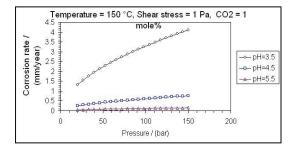
- 1. Introduction
- 2. Corrosion management the industry challenge
- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

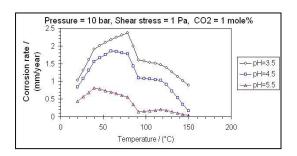
INTERNAL CORROSION IN PIPELINES

- Maybe not the biggest cause of failure in **upstream** pipelines
- Probably the most costly to manage

The immediate consequence of failure through internal corrosion is usually a **loss of containment**

- Leading to an uncontrolled release of fluid
- Several serious consequences may then arise:
 - A hazardous condition
 - An environmental incident
 - Loss of production or service
 - Reputational damage




In pipelines, the main **internal corrosion** threats prevalent include:


- Sweet (CO2) Corrosion
- Sour (H2S) Corrosion
- Microbiologically Influenced Corrosion (MIC)
- Erosion Corrosion
- O2 Corrosion

Example of CO2 corrosion on a riser

Sweet Corrosion (CO2)

Key mechanisms

- CO2
- Water cut
- Operating temperature
- Operating pressure
- pH

Corrosion rates can be **modelled** and calculated (e.g. **NORSOK**)

12:00 11:00 10:00 09:00 E 08:00 분 07:00 S 06:00 05:00 04:00 03:00 02:00 01:00 00:00 0 3.5 4 Log Distance (km)

Example of CO2 corrosion caused by condensation

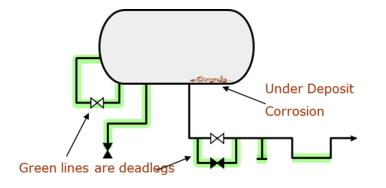
Sweet Corrosion (CO2)

Hot Spots

- Gas systems
 - Condensation on upper or cold areas
- Liquid
 - Water dropout and settling in lower regions of the pipeline/vessel

Mitigation

- Corrosion Inhibition
- pH Control
- Internal Linings
- Corrosion resistant materials, duplex stainless, titanium etc.
 (ö) ()~
- Removal/draining of water
- Control of dew point in gas systems to prevent condensation forming

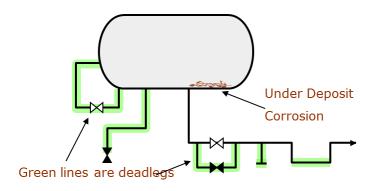


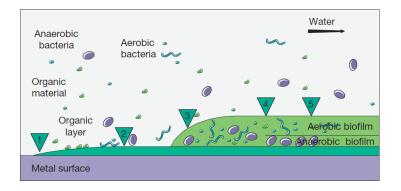
Microbiologically Influenced Corrosion (MIC) Key mechanisms

- Occurs where bugs may be allowed to grow to large concentrations
 - Dead legs
 - Areas of debris
 - Low/intermittent flow conditions
- Different types thrive at different temps

,,, (ö) (__)∼

Bacterial levels are checked by specialists (pig trash)


- SRBs (Sulphate Reducing Bacteria)
- APBs (Acid Producing bacteria)
- IRBs (Iron Related Bacteria)
- LNBs (Low Nutrient Bacteria)
- Etc.


Planktonic vs. Sessile?

Anaerobic / Aerobic

Enumeration & Quantification (bug counting ©)

Microbial Influenced Corrosion (MIC)

Hot Spots

- Can occur anywhere there are microbes, water and nutrients
- Deadleg locations
- Areas under sand/scale deposits are vulnerable to MIC.

Mitigation

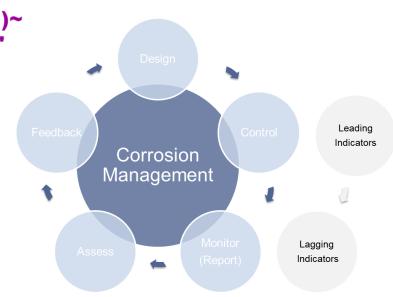
- · Regular biocide dosing
- · Kill dose of biocide
- Regular monitoring

- Removal of high concentration likelihood conditions
- Regular monitoring of dead legs

CONTENT

- 1. Introduction
- 2. Corrosion management the industry challenge
- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

CONTROLLING INTERNAL PIPELINE CORROSION

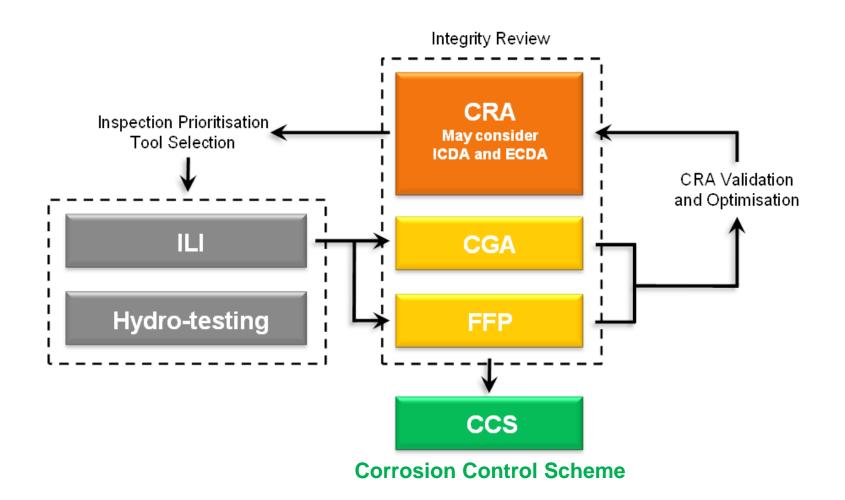

- What are the corrosion **risks**?
- What risks should be given priority and where are the "hot spots"?
- Are our corrosion control measures and mitigation (ö) (
 strategies effectively implemented?

, ,

(ö)

- Are these mitigation strategies effective?
- What are the **inspection** requirements?
- What is the integrity condition of the line?
- What is the remaining life of the pipeline?
- What mitigation and repair strategies are required to extend operational life?

	Corrosion Threat		
	High	Medium	Low
Oxygen corrosion			
MIC			
Erosion			
Sweet Corrosion			
Sour Corrosion			

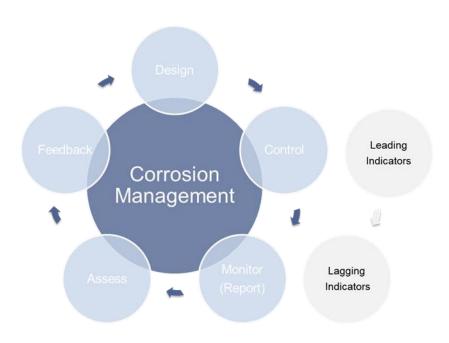


Slide 18

THE MACAW CORROSION CONTROL PROCESS

MACAW Engineering Ltd. © MACAW 2015

Slide 20


CCS - CORROSION CONTROL MATRICES

Corrosion Control Matrices (CCM)

•A list of critical physical and chemical activities, which need to be implemented to manage corrosion.

An individual CCM typically identifies:

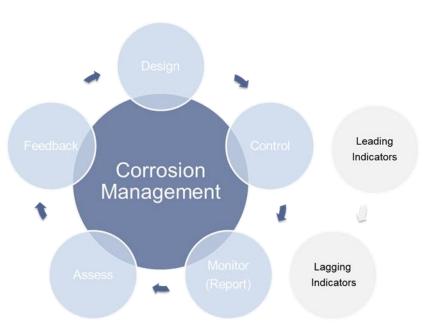
- Control activity (e.g. pigging / CI Injection)
- Responsible person
- Location of control
- Frequency of control application
- Threshold and target
- Corrosion threat if target is exceeded
- Corrective action if target is exceeded
- Responsible person for remedial action

CCS - KEY PERFORMANCE INDICATORS

Key Performance Indicators (KPIs) are used to:

•Provide understanding and visibility to management on the integrity status of key activities in a system

•Demonstrate that corrosion is being adequately managed


Typical corrosion management KPIs:

Mitigation – key process parameters, chemical dose rates

Monitoring – fluid / chemical sampling, residuals, corrosion coupon /pobes, bacterial audits, etc.

Inspection – work completion, overdue inspections, anomalies, failures

Pigging – completion of cleaning pigging to schedule, pig trash analysis

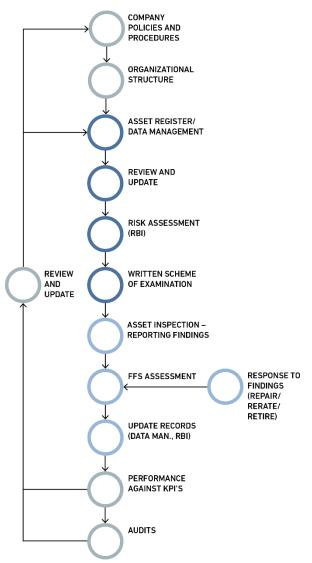
, ,

(Ö)

CMS IMPLEMENTATION CHALLENGES

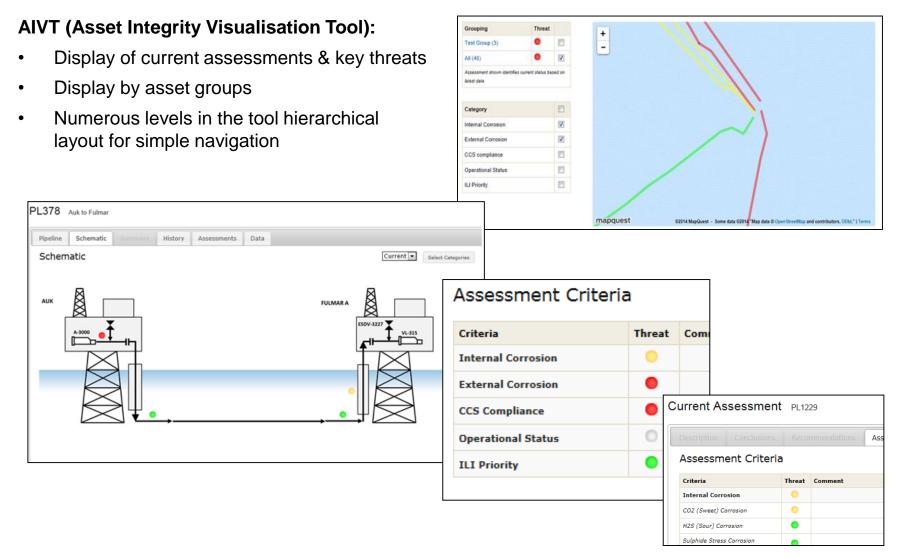
Even with an over-arching CMS in place, it is its implementation which should be critically evaluated

•Many tools already exist to management asset integrity - it is the correct application of these tools that is critical


Common **obstacles** to effective implementation of IM systems:

- •Excessive paper work
- ·Lack of visibility and readability of integrity status
- •Lack of awareness in regard to implementation of actions
- •Too many actions and lack of prioritisation

•Lack of communication between different organisation groups, e.g. Topsides vs. pipelines resulting in:


- Disjointed decisions across organisation
- Duplication of actions (not necessarily cost-effective)
- Lack of transparency and consistency in design, operation, inspection, monitoring, etc.

'INTEGRITY VISUALISATION' TOOL DEVELOPMENT

CONTENT

- 1. Introduction
- 2. Corrosion management the industry challenge
- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

THE ROLE OF OPERATIONAL PIGGING

Operational pigging can cover many basis:

- •Dewaxing preventing wax build-up on the pipe wall
- •Descaling removing / helping prevent scale formation or build-up
- •Liquids removal in gas pipelines (condensates / produced water)
- •Dewatering preventing water holdup in oil or multiphase pipelines
- •Removal of corrosion products
- •Removal of sand / sediments
- •To help prevent hydrate formation

Helping to maintain a clean internal pipeline surface and healthy pipeline environment ©

'Generally' this all helps with internal corrosion management, but...

THE ROLE OF OPERATIONAL PIGGING

There are **some exceptions** to the rule:

•Depending on the operational conditions an internal pipe wall can develop **protective oxide scales** over time

•This helps to control new or developing corrosion threats

•Introducing **pigging** (or increasing pigging aggressiveness) **can interfere** with the formation of such protective scale, exposing the pipe surface to corrosion mechanisms

•This might be necessary (e.g. for ILI pigging)

•The post inspection treatment regime then becomes a critical follow-up (e.g. biocide treatment)

Other headaches can arise:

Slugging affecting downstream facilities
Debris & waste handling (e.g. NORM)
Insufficient flow (slow flows / long pig runs)
Challenging logistics

THE ROLE OF OPERATIONAL PIGGING

Pigging can help several with internal corrosion management several key ways.

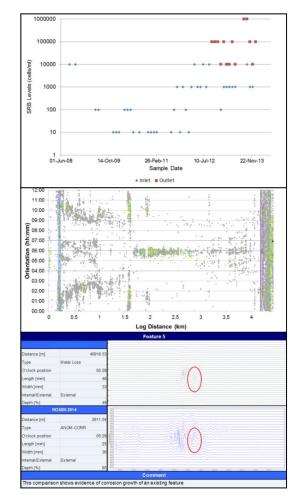
This includes:

- Prevention of deposit build-up
- Prevention of water hold-up
- Deposit / debris sampling
- Preserving asset operability

Sometimes pigging is the **primary mitigation** (i.e. it can have more impact than CI or a chemical treatment alone)

There are also many side benefits to routine pigging...

,, (ö) ()∼


OPERATIONAL PIGGING CM BENEFITS

Key Function / Task	Main Benefit	Additional Benefits
	Elimination of habitat for onset of associated corrosion mechanisms	Allows for optimisation of CCS elements
Prevention of Deposit Build-up	Improved CI effectiveness	Optimisation of chemical dosage rates
	Improves effectiveness of chemical treatments	Optimisation of biocide deployment strategy
	Deduction is pro UL clossing requirements	Reduction of future cost and operational risks associated with ILI
	Reduction in pre-ILI cleaning requirements	Improved ILI data quality
Prevention of Water Hold-up	Elimination of a key element required for a corrosion process	Allows for optimisation of other CCS elements
	Reduced burden on topsides processing facilities (avoids slugging)	Reduced risk of bulk water carry-over to vulnerable downstream assets
Den e cit / Del vie Comerlin n	Monitoring for presence / type of corrosion products and bacteria	Leading indicator for the internal condition of pipelines
Deposit / Debris Sampling	Monitoring for changes in pipeline operating conditions	Leading indicator for correct CCS set-up
	Maintains pipeline operability and operator's	Regular use and maintenance of pig traps and valves
Preserves Asset Operability	familiarity with asset and operating procedures	Active engagement of operator personnel in CMS process

OPERATIONAL PIGGING CM BENEFITS

However ... **routine pigging** as part of CM (within a CCS) needs to be **prescribed** according to the identified corrosion threat(s)

•Start with a Corrosion Risk Assessment (CRA)

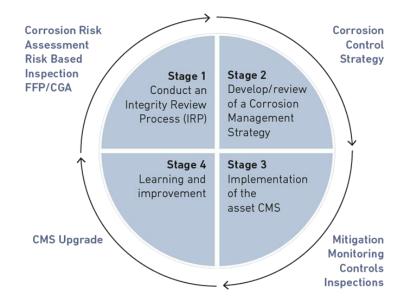
•Bring in other indicators to validate the CCS (e.g. ILI data)

•Use the correct tool(s) for the job:

- Pig duty e.g. for dewatering, deposit removal (wax / scale / sand & sediments etc.)
- Correct Pig specification & sizing
- Good pig maintenance

•Apply the **optimum** pigging frequency (need to consider the **practicalities**!!)

•Ensure **timely follow-up** at the receive location (e.g. pig recovery & trash analysis)


•Feedback to and update of CCS!

THE CMS FEEDBACK LOOP

- Required to feed corrosion control performance back into strategy
 - Optimisation of strategy
- Provides for timely change control of mitigation measures
 - Correct CI dosage, chemical treatments, pigging frequency etc. (CCMs)
- Provides focussed inspection strategy & frequency of routine & non-routine techniques
- Supports implementation of recommendations and corrective actions
- Optimises production, reliability, integrity and safety

CONTENT

- 1. Introduction
- 2. Corrosion management the industry challenge
- 3. Internal corrosion in pipelines
- 4. Controlling internal corrosion in pipelines
- 5. The role of operational pigging
- 6. Wrap-up

SUMMARY

- Internal corrosion in pipelines can be both challenging and costly
- It requires robust and diligent approach
- Implementation of a effective CMS can however reduce operating costs and environmental impact while maintaining both integrity and efficient and reliable pipeline operation
- **Pigging** can also play a very important role in effectively managing internal pipeline corrosion in upstream pipelines
- Can we do more with pigging here?
 - Get more from trash analysis
 - On-board product sampling
 - In addition to the usual operating data gathered by pig data loggers
 - In-line deposit sampling

THAT'S ALL TODAY...

THANK YOU FOR JOINING THIS PRESENTATION.

www.macawengineering.com

